Effect of a strength training program in young children with developmental coordination disorder

Abd El Aziz A. Sheriefa, Gehan M. Ahmedb and Mohamed A. Abd El Ghafarc

aDepartment of Physical Therapy for Growth and Development in Children and its Surgery, Cairo University, Behara; bDepartment of Neuromuscular Development in Children and its Surgery, Cairo University, Naser City, Cairo and cDepartment of Physical Therapy for Growth and Development in Children and its Surgery, Cairo University, Behara, Egypt

Correspondence to Abd El Aziz A. Sherief, Department of Physical Therapy for Growth and Development in Children Disorders and its Surgery, Cairo University, Behara, Egypt
Tel: +01223795368; fax: +0453610080; e-mail: aabdelazez10@yahoo.com

Received 4 November 2012
Accepted 16 December 2012

Egyptian Journal of Psychiatry
2013, 34:186–190

Introduction
School-based physical therapists carrying out exercise programs on children for 3 months encounter children who move in an uncoordinated manner, appear unaware of their body positions in relation to themselves and others, and cause classroom disruption. These behaviors can frustrate teachers, who then reach out to therapists for assistance. A child showing these behaviors may have an underlying sensory processing deficit contributing toward poor proprioception (American Psychiatric Association, 2000). According to Buzzard, ‘Proprioception can be defined as the sense of the position and movement of the limbs and body in space’. Proprioceptive information is transmitted from receptors found in muscles, joints, ligaments, skin, and other soft tissues to the central nervous system’ (Burt et al., 2003).

Children who show sensorimotor deficits, including impaired proprioception, may also fit into the classification of developmental coordination disorder (DCD) (Bauermeister et al., 2007). The prevalence of DCD in children 5–11 years of age is estimated to be 6% according to the American Psychiatric Association (Baumgardner et al., 1996). The criteria for DCD, as described in the Diagnostic and Statistical Manual of Mental Disorders (Baumgardner et al., 1996), assert that DCD is manifested by a marked impairment in the development of motor coordination that significantly interferes with academic achievement or activities of daily living. These impairments must not be associated with a general medical condition or a pervasive developmental disorder. If a child shows mental retardation, the motor skills should be delayed in excess of the child’s mental age.

Although the etiology of DCD is yet to be identified specifically (Braun et al., 2006), children with DCD of 3 months show signs of minor neurological dysfunction such as dysfunctional muscle tone regulation, reflex abnormalities, choreiform dyskinesia, coordination problems, poor fine motor manipulative ability, and miscellaneous rare disorders (Solanto, 2002). According to Solanto (2002), the percentage of cases of DCD that can be attributed to nervous system damage and whether these insults have occurred during prenatal, perinatal, or early postnatal development remain to be determined.

Controversy exists on the underlying deficits associated with DCD, including whether motor coordination deficits are a result of a physiological impairment or developmental delay (Paus et al., 1999). Researchers debate whether the coordination difficulties observed in children with DCD are a result of a unisensory deficit or a multisensory deficit involving the visual, vestibular, and proprioceptive systems (Paus et al., 1999). Even among the group of researchers who support the belief that...
coordination difficulties are a result of a unisensory problem, there is a lack of agreement as to which sensory system is involved (Paus et al., 1999).

According to Voller and Heilman (1998), the major treatment approaches that have been used for children with a diagnosis of DCD can be categorized into deficit-oriented and task-oriented interventions. Deficit-oriented approaches include sensory integration, sensorimotor, and process-oriented approaches (Voller and Heilman, 1998). Deficit-oriented approaches promoted by Cantwell (1996) and Yadid et al. (2001) use sensory-based intervention and kinesthetic training, respectively, to facilitate skill acquisition. Deficit-oriented interventions focus on reducing impairments in sensory processing abilities or in performance components believed to be the cause of the motor coordination deficits (Cantwell, 1996; Conners et al., 1998; Yadid et al., 2001; Braun et al., 2006; Taylor and Kuo, 2008) and focus on foundation skills (Taylor and Kuo, 2008).

Task-oriented approaches include task-specific approaches, parent–teacher intervention programs, and cognitive orientation to a daily occupational performance program (Voller and Heilman, 1998). Task-oriented approaches promoted by Horn et al. (1987), Conners et al. (1998), and McKune et al. (2003) use a problem-solving process to facilitate functional skill acquisition. Task-oriented interventions are based on the dynamical systems theory and focus on motor learning principles and cognitive participation (Conners et al., 1998; Voller and Heilman, 1998; Taylor and Kuo, 2008). Research focusing on task-oriented interventions has shown their effectiveness to be more positive compared with deficit-oriented approaches when addressing the needs of children diagnosed with DCD (Voller and Heilman, 1998; Taylor and Kuo, 2008).

When selecting a treatment strategy, however, a therapist should be flexible enough to take into consideration individual differences in the presentation and progress of children with DCD (Norris et al., 1992). Therefore, a multilevel approach to the treatment of children with DCD is recommended (Norris et al., 1992). In addition, the results of a study by Paluska and Schwenk (2000) support the use of interventions designed to improve self-efficacy in a child diagnosed with DCD.

Interventions of remediation of proprioception deficits are discussed most frequently in the sensory integration and sensory processing literature (Raglin and Morgan, 1987; American Psychiatric Association, 2000). Strategies of proprioception are placed into two categories: static or dynamic. Static strategies include the use of weighted items such as vests, beanbags, blankets, and cuff weights that can be worn during static as well as dynamic activities. Dynamic strategies require the child to actively participate in heavy muscle work such as pushing, pulling, or carrying heavy objects. Active heavy muscle work can also be generated through an individual’s own body weight through activities such as wheelbarrow walking, facilitating weight shifts, partner-pushing activities, and climbing.

Active heavy muscle work can also be achieved through structured strength training. According to the sensory integration theory, active muscle contraction against resistance is considered an effective strategy to facilitate the development of proprioceptive awareness (American Psychiatric Association, 2000). According to Potgieter (1997), strength training refers to the use of progressive resistance to augment performance by using submaximal amounts of weight. Evidence indicates that, when guidelines for strength training regarding children are strictly followed, no detrimental effects occur. According to the American College of Sports Medicine (Maddigan et al., 2003) and many authors (Went, 2000; Tantillo et al., 2002; Hoza et al., 2003; Biederman and Farabone, 2005) (25–27) strength training in children is both safe and effective when provided by a trained professional who adheres to published evidence-based guidelines.

Participants, instrumentation, and procedure

Eighty students of both sexes (50 boys and 30 girls) and diagnosed with DCD participated in this study. Their age ranged from 8 to 13 years. All children were functionally independent, could understand and follow orders, and were cooperative. Students were excluded if they had (a) medical or systemic problems such as hypertension, hypotension, or diabetes, (b) musculoskeletal deformities (scoliosis, kyphosis, pes cavus), (c) neurological problems (sensory or motor deficit), (d) orthopedic problems (including a history of trauma before the study of at least 2 months, rheumatic fever), and (e) obesity.

Procedures

The aim and the procedures of the study were explained in detail to the school manager, parents, and teachers. A detailed explanation of exercise was provided to the students before start of the study. Ethical approval was received from the schools’ administration for the participation of the children in the study. The children were assigned to two equal groups: control group and exercise group. The exercise group received an aerobic exercise program for 3 months with two sessions per week. The control group did not receive any study program.

Instrumentations for evaluation

Biodex dynamometer

The ratio of peak torque of quadriceps femoris muscle and the hamstring muscle of both lower limbs were measured using a dynamometer. The Biodex dynamometer (Nively, New York, USA) is a computerized device that was available for the current study in the Faculty of Physical Therapy, Cairo University. It has attachments and isolation straps for every part of the body. The position of the dynamometer can be controlled; it can be rotated horizontally, tilted, and its height can be adjusted according to the test. The system requires all information to be entered through a typewriter-style keyboard into its processor. It provides testing data, graph recording, and printed results of detailed information of torque, speed, time, motion, work, power, peak torque, ratio of peak torque to body weight, range of motion, and different ratios. The Behavior Rating Scale is a modified version of

Copyright © Egyptian Journal of Psychiatry. Unauthorized reproduction of this article is prohibited.
Conner’s Rating Scale (Conners et al., 1998). The scale has been validated for screening and assessing behavior and psychological problems related to DCD (Fisher and Newby, 1991). The scale provides a reliable, accurate, and relatively brief measure of perception of children’s disruptive behavior (Horn et al., 1987). It consists of 25 behavior-related questions, subdivided into categories for attention, motor skills, task orientation, emotional and oppositional behavior, and academic and classroom behavior. The higher the score, the better behaved the child.

Evaluation procedures isokinetic
All tests were performed (Biodex dynanometer) at the same time of the day for each child to reduce the effect of any variations. Age, height, and weight of each child were recorded, measured using a scale associated with the Biodex system. The dominant quadriceps femoris and hamstring muscles were determined by the child’s leg preference in kicking (Tantillo et al., 2002). Position of the child: each child was allowed a 5-min warmup before the evaluation. Then, the child was placed in the position seat with his/her hip and knee flexed at 110 and 90°, respectively. It was inferred that the most appropriate position for isokinetic knee testing is the sitting position with the hip and knee flexed at 110 and 90°, respectively (Raglin and Morgan, 1987). The child was placed in position after adjustment of the depth of the seat, the height of the dynamometer, and the length of the support lever that allows the axis rotation of the dynamometer to be aligned to the most inferior aspect of the lateral femoral epicondyle and the lower leg attached to the dynamometer lever arm above the medial malleolus by inches. A wide strap was placed diagonally on the child’s chest. A thigh strap attached to the seat was used to stabilize the thigh (Yadid et al., 2001). With each child, identical positioning of the seat, back rest, dynamometer head, and lower arm length was used before and after training (Taylor and Kuo, 2008). The children’s data were entered into the computer program database and the test protocol was set from the program database and the test protocol was set from the

Results
The raw data of the isokinetic measured and Behavior Rating Scale test in DCD children were statistically treated to determine the mean and SD of the measuring variable for the two groups before and after 3 months of treatment. As shown in Table 1 and Fig. 1, a significant improvement was observed in the mean value of isokinetics measured in group (A) at the end of the treatment compared with the corresponding mean value before treatment ($P<0.01$).

Also, Table 1 and Fig. 1 show a significant improvement in the mean value of isokinetic measured in group (B) at the end of treatment compared with the corresponding mean value before treatment ($P<0.01$).

As can be seen from Table 2 and Fig. 2, a significant improvement was observed in the mean value of the Behavior Rating Scale measured in group (A) at the end of the treatment compared with the corresponding mean value before treatment ($P<0.01$).

Also, Table 2 and Fig. 2 showed a significant improvement in the mean value of the Behavior Rating Scale measured...
in group (B) at the end of treatment compared with the corresponding mean value before treatment ($P<0.01$).

Table 1 Comparison of post-treatment mean values of isokinetic-measured (g/cm²) groups A and B in extension at 60°

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean ± SD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attentiveness</td>
<td>4.52 ± 1.75</td>
<td>0.001*</td>
</tr>
<tr>
<td>Motor skills</td>
<td>7.87 ± 3.96</td>
<td>0.004*</td>
</tr>
<tr>
<td>Task orientation</td>
<td>0.35 ± 0.81</td>
<td>0.004*</td>
</tr>
<tr>
<td>Emotional and oppositional behavior</td>
<td>2.61 ± 3.14</td>
<td>0.004*</td>
</tr>
<tr>
<td>Academic and classroom behavior</td>
<td>30.55 ± 1.34</td>
<td>0.001*</td>
</tr>
</tbody>
</table>

*Significance.

Conclusion

It was found that the behavior of children with DCD improved over 3 months of an exercise program. Therefore, exercises may be considered as an additional treatment required to improve behavior in children with DCD.

Acknowledgements

The authors thank patient, colleagues and their family.

Conflicts of interest

There are no conflicts of interest.
References

